
International Journal of Computer Trends and Technology Volume 67 Issue 4, 24-28, April 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I4P105 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Transform & Execute Apache Struts 1. x

based Validations to Bean Validation through

JSF

Vijay Kumar Pandey

Director of Technology Solutions, Intueor Consulting, Inc. Irvine, CA (United States of America)

Abstract. - The paper is intended to provide an

understanding of how to transform and execute

Apache Struts 1. x based validation to Bean

Validation and then execute the transformed validate

method through Java Server Faces (JSF) runtime.

JSF, by default, executes the validation

PROCESS_VALIDATIONS after the
APPLY_REQUEST_VALUES phase, and if there are

no validation issues, then the control passes to the

UPDATE_MODEL_VALUES phase. Else it goes to

the RENDER_RESPONSE phase. While in the Struts

1. x application, the Struts action form is populated

with the request parameter values, and then only its

'validate' method is executed. So direct mapping of

struts validation execution process will fail in JSF

since the model (action form) will not be populated

with the request parameters when the validation is

executed.

Keywords – Struts, JSF, ‘’validate’ method,Bean

Validation (BV), OmniFaces, ThreadLocal,

ActionForm, ControllerBean, TagHandler.

I. INTRODUCTION

Struts-based validation of the action form is

defined in the class ValidatorFormand executed

through the validate method public Action Errors

validate (Action Mapping mapping, Http Servlet

Request request). The implementation here executes

all the configured struts-based validation on various

form properties. Developers must execute this super

method from their respective action forms validate

method. Most of the time, the application will also

have various non-configured validations present in
the validate method. For every validation failure in

struts, an ActionErrorwill is created and stored in the

request/response for it to be displayed during the

rendering of the page. Suppose the transformed JSF

application from Struts transforms the struts-based

validation config to Bean Validation-based constraint

annotations and would like to execute the transformed

validate method in JSF only after the

UPDATE_MODEL_VALUES phase. In that case,

the default lifecycle of JSF should be changed to

provide this feature. JSF is a feature-rich framework,

and this unique problem can be solved by using a

JSF-based tag handler. A JSF-based tag handler can

execute the transformed validate method after the

UPDATE_MODEL_VALUES phase to ensure that

the active form bean (will call controller bean in JSF)

is populated with the request parameters. The

downside to this is it will be populated with
invalidated data. Developers need to ensure that their

forms are validated before the data is sent for further

processing through the INVOKE_APPLICATION

phase.

II. STRUTS VALIDATE TO JSF VALIDATE

 Most struts-based validators are based on the

open-source project Apache Commons Validator. A
standard Struts required validator maps to Bean

Validator’s NotNull constraint. For better

understanding, a validated struts action form

UserForm is created with a String property firstName,

which will be configured with the required validation.

A. Struts based UserForm with firstName

public class UserForm extends ValidatorForm {

 private String firstName;

 public String getFirstName(){

 return firstName;

 }

public void setFirstName(String firstName){

 this.firstName = firstName;

 }

public ActionErrors

validate(ActionMappingmapping,HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request)

 if (errors.size() > 0) {

 return errors;

 }

 //some other specific validations

}

http://creativecommons.org/licenses/by-nc-nd/4.0/

Vijay Kumar Pandey / IJCTT, 67(4), 24-28, 2019

25

B. Struts Validation Configuration
<form name="userform">

<field property="firstName" depends="required">

<msg name="required" key="error.required.firstName"/>

</field>

</form>

 The user form above provides the struts validation

configuration based on the validation method. The

code super. Validate (mapping, request)will use the
validation config, and if any validation error gets

added to the ActionErrors.

C. JSF based User Controller Bean with the first

Name

 Instead of calling this class a form, which was

mainly a Struts way of naming them, let’s call this

form class as UserControllerBean. This will extend

from a base class that can provide all the common

functionality and the implementation of the Bean

Validation.

public class UserControllerBean extends BaseControllerBean {

@NotNull(message = "{error.required.firstName}")

 private String firstName;

 public String getFirstName(){

 return firstName;

 }

 public void setFirstName(String firstName){

 this.firstName = firstName;

 }

public voidvalidate() {

FacesContextfacesContext = FacesContext.getCurrentInstance();

super.validate();

if (facesContext.getMessageList(). size() > 0) {

 return;

}

 //some other specific validations

}

In the above class, the field firstName is annotated

with the NotNull Bean Validation constraint

annotation, which is like the required validation from

Struts. The validate method has been transformed by

removing all the Struts-based parameters and

managing any request/response-based invocation

through FacesContext. In the superclass, validate

method will be implemented to provide Bean

Validation-based implementation.

D. Bean Validation JSF based implementation

 Below is a code excerpt on how to take a

ControllerBean and validate the bean validation

constraint annotations annotated on the field or the

property.

javax.validation.Validator validator = // fetch the validator

for (String property : propertyList) {

Set violationsRaw = validator.validateValue(this.getClass(),

property, propertyValue, beanValGroups);

 //add the violations as JSF error message

}

III. JSF TAG HANDLER MECHANISM TO

CHANGE LIFECYCLE

 Transforming Struts-based validation to Bean

Validation and executing it through JSF runtime will

require execution of validate method of the

ControllerBean after it has been populated with the
request parameters. To ensure this, validate method

needs to be executed after the UPDATE_MODEL

phase. The section below will describe how to set up

this mechanism in JSF.

A. Stopping Bean Validation during

PROCESS_VALIDATIONS

 A JSF-based tag handler will be designed to

maneuver the mechanism of moving the

PROCESS_VALIDATIONS phase after the

UPDATE_MODEL_VALUES phase.

public class ValidateTagHandler extends TagHandler

 This being a tag handler for processing validation

mainly on html form submission, it should only be set

up during postBack processing for the

RESTORE_VIEW phase.

if (! (ComponentHandler.isNew(parent)

&&facesContext.isPostback()

&&facesContext.getCurrentPhaseId() == RESTORE_VIEW)) {

return;

}

 Once the RESTORE_VIEW phase has been

completed, all the JSF components will be set up.

During the tag handle processing, add a phase listener

that will be executed after the RESTORE_VIEW

phase is completed. The main operations that will

happen in this dynamic phase listener are

 Remove the JSF-based BeanValidator from the JSF

component, or else the validation will get invoked

during the PROCESS_VALIDATION.

Validator[] validators = component.getValidators();

for (Validator validator : validators) {

if (validator instanceofBeanValidator) {

 return (BeanValidator) validator;

}

}//create a dummy validation group

private interface NoValidationGroup {}

//set a dummay validation group so that actual validation does

//not invokes

String nonValGroup = NoValidationGroup.class.getName();

//keep the original validation group – that will be reset after

//this phase

beanValidator.setValidationGroups(nonValgroup);

 Add a new JSF validator Collect Submit Val

Validator to the JSF component that collects the

submitted and converted value through its validate

method but doesn’t perform the actual validation.

Vijay Kumar Pandey / IJCTT, 67(4), 24-28, 2019

26

This submitted/converted values collection will

later be validated through Bean Validation.

component.addValidator(new <<SomeValidator to extract

submitted value>>);

Both above processes of removing the bean validation

by adding a dummy validation group and adding a

new validator to collect the submitted and converted

values must be executed through a phase listener.

This should be invoked before the

PROCESS_VALIDATIONS phase.

A new phase listener should also be set up to be
invoked after the PROCESS_VALIDATIONS phase

to reset the original validation group related to bean

validation and remove the new validator

CollectSubmitValValidatdor from the component that

was added to collect the submitted values.

//restore the original bean validation group

BeanValidatorbeanValidator = getBeanValidator(component);

if (beanValidator != null) {

String originalValiGrp = component.getAttributes()

.remove(“original_bean_val_group”);

beanValidator.setValidationGroups(“original_bean_val_group”)

;

}

//remove the ‘CollectSubmitValValidatdor’

EditableValueHoldervalueHolder = //reference component

Validator colValidator = null;

for (Validator validator : valueHolder.getValidators()) {

if (validator instanceofCollectSubmitValValidatdor)

 colValidator = validator;

 break;

}

}

if (colValidator != null) {

valueHolder.removeValidator(colValidator);

}

B. Execution of validate method

 In the same tag handler, a new phase listener must

be added to invoke the actual validate method on the

controller bean. This phase listener should be added

after the UPDATE_MODEL_VALUES phase.

//find the actual ‘validate method of the controller bean

Method method = //either through reflection or some reflection lib

method.invoke(controllerbean);

//If any exception in the above invocation

facesContext.validationFailed();

facesContext.renderResponse();

C. Omni Faces

 Omni Faces is a JSF utility library, and its

contribution to the JSF world is immense. This

paper’s tag handler concept is based on the

OmniFacesValidateBean tag handler.

D. Test User. xhtml

 The below code provides the usage of the tag

handler (tag: valTag) in an xhtml page that will

invoke the validate method on the

UserControllerBean

E. User Controller Bean

 The code in the Bean below shows the validate

method and annotated first name field with the

NotNull constraint annotation and shows a manual

custom error condition.

F. Base Controller Bean

 This Bean can be used as a superclass for all the

controller beans (basically JSF's counterpart of the

struts ActionForms). This class will provide the base

implementation of the Bean Validation and add the

constraint violations as jsf error messages.

Vijay Kumar Pandey / IJCTT, 67(4), 24-28, 2019

27

Vijay Kumar Pandey / IJCTT, 67(4), 24-28, 2019

28

In the above code of the base validate method,

ValidationComponentState is a java bean type class

to hold the metadata for a jsf component. It will be

populated during the validate tag handler processing.

To pass the collection of this metadata for various

submitted components from a facelet (xhtml), java

thread-local can be used, which is managed with the

help of classes like ValidationContext and

ValidationContextHolder.

IV. CONCLUSION

 This paper presents a unique approach to

transforming a struts-based action form and

converting it to a JSF and CDI-based controller bean

to mimic the struts-based validation in the JSF

scenario, where struts validation was converted to

bean validation. This paper goes in-depth about

removing any bean validation processing during the

JSF lifecycle and transforming the validation

processing by invoking a validate method of the

controller bean after the

UPDATE_MODEL_VALUES phase.

REFERENCES

[1] Apache Commons Validator -

https://commons.apache.org/proper/commons-validator/

[2] OmniFaces - http://omnifaces.org/

[3] Bean Validation 2.0 JSR 380-

https://beanvalidation.org/2.0/

[4] Java Server Faces -

https://javaee.github.io/javaserverfaces-spec/

[5] Struts Validation in ActionForm -

https://www.owasp.org/index.php/Struts_Validation_in_an

_ActionForm.

http://omnifaces.org/
https://javaee.github.io/javaserverfaces-spec/

